
π_l,π^* -Absorption Bands as a Valuable Source of Information on the Structure of Tautomers and Conformers

V. Ya. Fain, B. E. Zaitsev, and M. A. Ryabov

Russian University of Peoples' Friendship, ul. Miklukho-Maklaya 6, Moscow, 117198 Russia

Received June 30, 2005

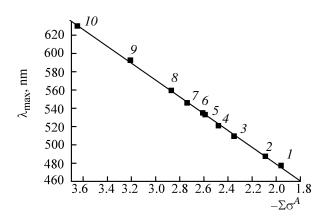
Abstract—The presence of several π_l , π^* -absorption bands in the electronic spectrum of hydroxyanthraquinones indicates the occurrence of tautomeric and conformational equilibria. The structure of tautomers and conformers can be determined from the correlation between λ_{max} and the sums of the constants σ^A of hydroxy and oxido groups, calculated for each isomer.

DOI: 10.1134/S1070363206040141

Using α -hydroxyanthraquinones as examples we showed that the long-wave π_l , π^* -absorption bands are valuable as a source of information on the tautomeric and conformational structure of organic compounds. Each hydroxy-substituted anthraquinone can exist in different forms resulting from tautomeric transformations and rotational isomerism. According to quantum-chemical calculations, each state is characterized by its unique π_l - π^* transition; therefore, the presence of several π_l , π^* bands in a single experimental spectrum indicates the existence of tautomeric and conformational equilibria.

In each state, the hydroxy group can be free (OH), intramolecularly H-bonded (OH*) or ionized (in alkaline medium, O $^-$). For example, 1,4,5,8-tetrahydroxyanthraquinone exists as four tautomers having 9,10-, 1,10-, 1,4-, and 1,5-quinoid structures. In the three latter, the hydroxy groups occupy different α -and *meso*-positions and are free or H-bonded, e.g., as shown below.

Each tautomer could give rise to several conformers as a result of rupture of intramolecular hydrogen bonds.


It was proposed to use correlations of λ_{max} with the sums of the constants σ^A of OH, OH*, and O groups for the assignment of experimental π_l , π^* -absorption bands to particular conformers. Spectroscopic constants σ^A [1] characterize the donor–acceptor

power of a substituent X in intramolecular charge transfer along the conjugated bond sequence X-(CH=CH)_n-C=O; this charge transfer determines the position of long-wave absorption maxima of substituted 9,10-anthraquinones. Separate scales of constants σ^A for the α - and *meso*-positions of each tautomeric anthraquinone are necessary to ensure a correlation between the position of the π_l, π^* maximum of each conformer and the sum of σ^A within an isostructural series. Such constants were calculated both from the experimental values of λ_{max} for different α-hydroxyanthraquinones in various solvents and theoretically (by quantum-chemical methods; see table). The results were independent on the calculation method. Correlation analysis of several tens absorption spectra of different α-hydroxyanthraquinones, their substituted derivatives, and the corresponding anions in various solvents revealed no π_l, π^* band which could not be assigned to a particular tautomer and conformer; moreover, very high correlation coefficients suggest nonrandom character of the relations found.

As an example, let us consider the correlation between the π_l , π^* maxima of 1,4,5,8-tetrahydroxyan-

Constants σ^A of hydroxy and oxido groups in tautomeric anthraquinones

Constant	9,10	1,4	1,10	1,5
$ -\sigma_{\alpha}^{A}(OH) -\sigma_{\alpha}^{A}(OH^{*}) -\sigma_{\alpha}^{A}(O^{-}) -\sigma_{meso}^{A}(OH) -\sigma_{meso}^{A}(OH^{*}) -\sigma_{meso}^{A}(O^{-}) $	0.49 0.62 1.01 - -	0.66 0.81 1.25 0.58 0.71 1.10	0.67 0.81 1.23 0.60 0.72 1.09	0.85 1.00 1.45 0.77 0.90 1.30

Correlation between the π_l , π^* -absorption maxima of 1,4,5,8-tetrahydroxyanthraquinone in heptane [2] and its anion [3] with the sum of the constants σ^A of hydroxy and oxido groups: (1) (OH)₄-9,10-, (2) (OH)₃OH*-9,10-, (3) OH(OH*)₃-9,10-, (4) (OH*)₄-9,10-, (5) (OH)₄-1,10-, (6) 5,8,10-(OH)₃-9-OH*-1,4-, (7) (OH)₂(OH*)₂-1,4-, (8) (OH)₂(OH*)₂-1,10-, (9) (OH)₃OH*-1,5-, and (10) 1-OH*-4,5,8-(O⁻)₃-9,10-anthraquinones.

thraquinone and its anion with $\Sigma \sigma^A$. This correlation made it possible to assign each π_l, π^* band and propose a structure for the only reported anion of this compound, for which even the degree of ionization was unknown. The correlation is decribed by the following equation (see figure):

$$\lambda_{\text{max}} = (296.7 \pm 2.2) - (91.21 \pm 0.80) \Sigma \sigma^{A}, \text{ nm};$$

 $r = 0.9997, s = 1.2 \text{ nm}.$

This results, as well as other analogous data, indicates that the generally accepted views implying exclusively 9,10-quinoid structure of anthraquinones and obligatory intramolecular hydrogen bond between

the carbonyl oxygen atom and hydroxy group in the *peri* position should be revised. The molecular structure of many hydroxyanthraquinones cannot be given by a single formula, for these compounds exist in different states occurring in a dynamic equilibrium with each other. The composition of such a mixture of different forms may change depending on the conditions, e.g., solvent nature.

Hydroxyanthraquinone structure is inherent to a vast number of naturally occurring compounds [3] whose color and biological activity are determined by the number of α -hydroxy group and their mutual arrangement. Our concepts made it possible not only to rationalize for the first time the presence of a set of π_l , π^* bands in the electronic absorption spectra of hydroxyanthraquinones but also to predict their position. It might be expected that our concepts on the presence of several π_l , π^* bands in the electronic absorption spectra as a result of existence of tautomeric and conformational equilibria would be general for organic chemistry.

REFERENCES

- 1. Fain, V.Ya., *Korrelyatsionnyi analiz elektronnykh spektrov pogloshcheniya* (Correlation Analysis of Electronic Absorption Spectra), Moscow: Sputnik+, 2002, p. 56.
- 2. Anoshin, A.N., Val'kova, G.A., Gastilovich, E.A., Klimenko, V.G., Kopteva, T.S., Nurmukhametov, R.N., Rodionov, A.N., and Shcheglova, N.A., *Elektronno-kolebatel'nye spektry aromaticheskikh soedinenii s geteroatomami* (Electronic and Vibrational Spectra of Heteroelement-containing Aromatic Compounds), Moscow: Nauka, 1984, p. 82.
- 3. Thomson, R.H., *Naturally Occurring Quinones. II*, London: Academic, 1971.